

L. Kaltenegger & J. Kasting & the SAG4 team: Abbot, Betremieux, Cowen, Domagal-Goldman, Forget, Green, Kopparapu, Meadows, Pierrehumbert, Rauer, Robinson, Rugheimer, Sasselov, Seager, Segura, Selsis, Traub (& you!) ExoPAG, Oct 5 2013

SAG 4. Planetary Measurements Needed for Exoplanet Characterization

- Objective: Determine
 - which measurements are needed to characterize large and small exoplanets,
 - how accurate they must be,
 - how difficult they are to obtain, and
 - which might be done from the ground
- Participants: Atmospheric and surface modelers, ground and space observers, and exoplanet mission teams

 SAG4 team: Abbot, Betremieux, Cowen, Domagal-Goldman, Forget, Green, Kaltenegger, Kasting, Kopparapu, Meadows, Pierrehumbert, Rauer, Robinson, Rugheimer, Sasselov, Seager, Segura, Selsis, Traub (& you!)

SAG 4. Planetary Measurements Needed for Exoplanet Characterization

Products:

- List of measurements and required precisions needed to understand a planet's state to different levels of completeness
- List of measurement techniques that look over different time frames,
 and which of these can only be done from space

Timeline

- Report draft (LK & JK) send to team mid Nov
- Comments due mid Dec (team)
- Report sent to ExoPAG EC end Dec
- Presentation of the SAG 4 Report at ExoPAG 9 @ AAS

Baseline: Earth & Different evolution state / age / mass / etc.

WORKING QUESTIONS:

- -Resolution needed for detection of atm & Biosignature?
- Alternative Biomarkers?
- Detectable (SNR, λ)?
- Temp? Radius?
- -Inst. Requirements e.g. JWST, E-ELT

Transit & Direct Imaging & Lightcurves

Earth: Seen as an exoplanet

(Data = Shuttle, EPOXI, Earthsshine, TES) Manage Ma

Earth: Transmission Spectrum (VIS-IR)

Kaltenegger & Traub 2009 Betremieux & Kaltenegger 2013 Data: ATMOS B. Irion 2002

First examples: JWST (work in progress)

Signal / [stellar photon noise] 1 transit - Super Earth

 $(R=2R_{Earth}, A=0.3, \lambda=1.5 \mu m, \lambda/\Delta\lambda=10, dist=10 pc, \mu=28g mol, fixed T: 270K, JWST)$

 $\overline{SNR} \propto (N_{transits})^{1/2} \times [10 \text{ pc / dist}]$

 $\overline{(R=2R_{Earth}, A=0.3, \lambda=10 \mu m, \lambda/\Delta\lambda=10, dist=10 pc, \Delta T_B=50K, fixed T: 270K JWST)}$

 $\overline{SNR} \propto (N_{\text{transits}})^{1/2} \times [10 \text{ pc/dist}]$

We use pot. rocky planet models in HZ (R < 2 R_{earth})

Amount of Starlight that Reaches the Planet (in Earth units)

Kasting et al 93, Selsis et al 07, Abe 11, Kaltenegger & Sasselov 11, Kapporapu et al 13, Zsom et al 13...

HOT

WARM

COLD

Earth Evolution over geological time - CSI

Reflected light

 $\overline{I_{\text{VIS/NIR}}}(t) \propto \overline{\phi(t)} \times A \times 2\pi R^2$

The reflected light (visible-NIR) is modulated by $\phi(t)$ with or without a dense atmosphere

Thermal emission

The thermal emission is modulated by $\phi(t)$ only when there is no (or a thin) atmosphere

SAG 4. Planetary Measurements Needed for Exoplanet Characterization

Products:

- List of measurements and required precisions needed to understand a planet's state to different levels of completeness
- List of measurement techniques that look over different time frames, and which of these can only be done from space

Timeline

- Report draft (LK & JK) send to team mid Nov
- Comments due mid Dec (team)
- Report sent to ExoPAG EC end Dec
- Presentation of the SAG 4 Report at ExoPAG 9 @ AAS
- SAG4 team: Abbot, Betremieux, Cowen, Domagal-Goldman, Forget, Green, Kaltenegger, Kasting, Kopparapu, Meadows, Pierrehumbert, Rauer, Robinson, Rugheimer, Sasselov, Seager, Segura, Selsis, Traub
- WELCOME TO THE TEAM e-mail: kaltenegger@mpia.de